9x^2-9=40-x^2

Simple and best practice solution for 9x^2-9=40-x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x^2-9=40-x^2 equation:



9x^2-9=40-x^2
We move all terms to the left:
9x^2-9-(40-x^2)=0
We get rid of parentheses
9x^2+x^2-40-9=0
We add all the numbers together, and all the variables
10x^2-49=0
a = 10; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·10·(-49)
Δ = 1960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1960}=\sqrt{196*10}=\sqrt{196}*\sqrt{10}=14\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{10}}{2*10}=\frac{0-14\sqrt{10}}{20} =-\frac{14\sqrt{10}}{20} =-\frac{7\sqrt{10}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{10}}{2*10}=\frac{0+14\sqrt{10}}{20} =\frac{14\sqrt{10}}{20} =\frac{7\sqrt{10}}{10} $

See similar equations:

| 18m-8=2 | | -7(3p)+4-10=2(2p+6) | | x5+7=8 | | 17x-2=3x+8 | | 9b-7(25-b)=33 | | w4-9=2 | | b10+23=40 | | q3+6=18 | | 2/3r-5=7 | | 2(4x-3)=10x+8= | | 6x+12=x+9+2x | | 12=14a | | -9x+5x=7-5x | | 5p-1=3p+3 | | 5/3x-7/5=1/6× | | (x+3)÷3=x-5 | | -3x-8=6x+19 | | 8x+110=10x+20 | | 4w+4-3w=-1+5 | | 6x2^-47x=-77 | | 6x2^-47x+77=0 | | 3.3y-2.3y+4.1=-2.8-1.3 | | -40=2x=10 | | W=-1/50p2+3p+15 | | 2/3=y-7/3 | | 15=w+14 | | 2x^2+12=15 | | -11m+4(m-3)+6=4m-12 | | -7m+8+4m=-3(m-3)-1 | | 5c+0.5=2.75 | | 1.5x-3=15 | | y-3.6=5.8 |

Equations solver categories